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Abstract—A Peano curve p(x) with maximum square-to-linear ratio |p(x)−p(y)|2
|x−y| equal to 5 2

3 is
constructed; this ratio is smaller than that of the classical Peano–Hilbert curve, whose maximum
square-to-linear ratio is 6. The curve constructed is of fractal genus 9 (i.e., it is decomposed
into nine fragments that are similar to the whole curve) and of diagonal type (i.e., it intersects a
square starting from one corner and ending at the opposite corner). It is proved that this curve
is a unique (up to isometry) regular diagonal Peano curve of fractal genus 9 whose maximum
square-to-linear ratio is less than 6. A theory is developed that allows one to find the maximum
square-to-linear ratio of a regular Peano curve on the basis of computer calculations.
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1. INTRODUCTION

Continuous mappings of an interval onto a square, called Peano curves in honor of the Italian
mathematician Giuseppe Peano, who discovered these curves, turned from a mathematical oddity
into a tool of applied mathematics a long time ago.

Peano curves are used for numerically integrating functions of several variables, for compressing
images, and for encoding information (see [1, 3]). A two-dimensional image (black and white,
grayscale, or color) can be represented as a function f(x, y) defined on a (digital) rectangle. Let
p(t) be a Peano curve that maps an interval onto this rectangle. Then the composition f(p(t)) is
a function of one variable, which can be compressed (with loss of information), for example, by
decomposing into wavelets. Such a representation agrees well with the JPEG-2000 algorithm and
allows for zooming: decoding a part of the image.

An important characteristic of a Peano curve is given by its square-to-linear ratio. For a pair of
points1 p(t), p(τ) of a Peano curve p : [0, 1] → [0, 1] × [0, 1], the ratio

|p(t) − p(τ)|2
|t − τ |

is called the square-to-linear ratio of the curve p on this pair. The upper bound of the square-to-
linear ratios for all possible pairs of different points of a curve is called the square-to-linear ratio of
this curve. For applications, the curves with the least square-to-linear ratio are of most interest.

Just as an ordinary curve is naturally parameterized by its length, a Peano curve is naturally
parameterized by its area. Namely, a Peano curve p(t) is said to be area-parameterized if the area
of the image of any interval is equal to the length of this interval. All the Peano curves considered
below are assumed by default to be area-parameterized.

According to [2], a mapping of an interval onto a square is called a regular fractal Peano curve if
the domain of definition can be decomposed into several equal segments (fractal periods) such that
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1By a point of a curve we mean a point of its graph; i.e., a point of a Peano curve is in fact a pair t, p(t), where t
belongs to the source interval and p(t) belongs to the image square.
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Fig. 1. Three steps of the construction of the Peano–Hilbert curve.

Fig. 2. The first Peano curve.

the restriction of the curve to any of its fractal periods is similar to the whole curve. The (least
possible) number of fractal periods is called the fractal genus of the curve. The fractal genus of a
Peano curve whose image is a square is itself a perfect square. The Peano–Hilbert curve is the only
(up to symmetry and similarity) curve of fractal genus 4.

As is obvious, a regular fractal Peano curve that maps a unit interval onto a unit square (a unit
curve) is area-parameterized.

The exact calculation of the square-to-linear ratio for a given regular Peano curve is a rather
difficult problem. For example, until the present study, the square-to-linear ratio was exactly
determined (see [4]) only for the simplest (and the most popular) Peano–Hilbert curve (see Fig. 1),
and this ratio is 6.

On the other hand, Shchepin [2] proved that the square-to-linear ratio of any unit regular Peano
curve cannot be less than 5.

The Peano–Hilbert curve has fractal genus 4; i.e., it is divided into four isometric parts that are
similar to the whole curve. The original Peano curve, which is shown in Fig. 2, has fractal genus 9.
The square-to-linear ratio for this curve is 8.

In this paper, we systematically analyze Peano curves of fractal genus 9. The number of such
curves amounts to thousands. Among them, there is (Theorem 1) a unique curve (see Fig. 3) with
square-to-linear ratio 52

3 , which is smaller than that of the Peano–Hilbert curve. We will call this
curve a minimal N-shaped curve.

The proof of the fact that the square-to-linear ratio of the minimal N-shaped curve is equal
to 52

3 is based on computer calculations. To guarantee the validity of a proof based on these
calculations, in this paper we construct a theory that allows one to draw exact conclusions about
the square-to-linear ratio on the basis of computer calculations.

The restriction of a curve onto its fractal period is called a fraction of this curve. A regular
Peano curve of fractal genus g is divided into g isometric fractions of the first order. In turn,
each first-order fraction is divided into g isometric fractions of the second order, etc. All kth-order
fractions are isometric to each other and are similar to the whole curve. In this paper, we prove
(Theorem 3) that for “nonsingular” (without singular points in the sense of Section 4) regular Peano
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Fig. 3. Minimal N-shaped curve.

curves, the square-to-linear ratio attains its maximum on a pair of corners (the image of a fraction
is a square) of fractions of some order. Nonsingular curves include, in particular, all diagonal curves
whose square-to-linear ratio is less than 6 (Theorem 2).

The key concept that defines the volume of computations necessary for the validity of the proof
is the concept of depth of a regular Peano curve. The restriction of a Peano curve to a pair of
adjacent fractal periods of order k is called a kth-order junction of this curve. The depth of a
regular fractal Peano curve is the greatest natural number d for which the curve has a junction of
order d that is not similar to any junction of lower order. The depth of the Peano–Hilbert curve is
equal to 2, while the depth of the minimal N-shaped curve is 1. It can be shown that the depth of
any regular Peano curve is not greater than 9.

As a rule, for a regular Peano curve of depth d (see Theorem 7), the square-to-linear ratio attains
its maximum on a pair of points that are corners of fractions of order d + 4. In particular, this is
the case for the minimal N-shaped curve.

2. RECURRENT EQUATIONS OF SQUARE PEANO CURVES

Chain code. We consider a plane equipped with a complex structure. We assume that the
real axis is horizontal and is directed from left to right, while the imaginary axis is vertical and is
directed upward.

A sequence of squares with the sides parallel to the coordinate axes of a plane square lattice
is called a chain if any two adjacent squares in the sequence have a nonempty intersection. The
caliber of a chain is the (common) side length of the squares contained in this chain. The difference
between the center of a square of a chain and the center of the preceding square is called a step of
the chain. A normalized step of a chain is the ratio of a step to the caliber. The normalized step
may take one of the eight values: 1, i, −1, −i, 1 + i, 1− i, −1 + i, or −1− i. A chain of squares is
uniquely determined by the position of the first square and the sequence of normalized steps. The
polygonal line connecting the centers of adjacent squares of a chain is called the central polygonal
line of the chain of squares. The central polygonal line uniquely determines the chain and is used
for its visualization.

The union of all squares of a chain is called the body of the chain. A chain of squares is called
a subdivision of another, with the larger caliber, if these chains have identical bodies and the finer
chain is divided into nonintersecting chains whose bodies make up the squares of the coarser chain.
A sequence of chains in which each next chain is a subdivision of the preceding is called a refining
sequence. Any refining sequence of chains of squares defines a continuous mapping of a unit interval
of the real axis onto the common body of the chains of the sequence. This mapping can be defined
as the limit of naturally (by the arc length) parameterized central polygonal lines of the chains of
the sequence.

To code the central polygonal lines of chains, we will use special sums enclosed in brackets. The
terms of such a sum are the normalized steps of the chain, and their order corresponds to the order
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of the squares in the chain. We will call these sums chain codes. For example, the expression

[i + 1 − i] (1)

corresponds to the polygonal line whose second square is situated above the first square, the third
square is to the right of the second, and the fourth is below the third. Such is the central polygonal
line of the first subdivision of the Peano–Hilbert curve (see Fig. 1). The central polygonal line of
the second subdivision of the same curve is expressed as

[
1 + i − 1 + i + i + 1 − i + 1 + i + 1 − i − i − 1 − i + 1

]
. (2)

We consider the symbols of a chain code as complex numbers. Therefore, we can apply the
operation of termwise multiplication by a complex number to a chain code. For example, i[i+1−i] =
[−1+ i+1]. Complex conjugation is also applied to chain codes termwise: [−i + 1 + i] = [i+1− i].
Using this notation and denoting the code [i+1− i] by a single letter d, we can represent the above
code of the second subdivision as

[
id̄ + i + d + 1 + d − i − id̄

]
. (3)

This formula is universal; it allows one to obtain the code of the (n+1)th subdivision by substituting
the code of the nth subdivision for d. Thus, we have obtained a recurrent equation of the central
polygonal line for the Peano–Hilbert curve:

dn+1 =
[
id̄n + i + dn + 1 + dn − i − id̄n

]
, d0 = [ ]. (4)

The recurrent equation that describes the polygonal lines passing through the corners of the
fractions of the subdivisions of this curve is still simpler. For the initial square, the order of corners
in which they are passed by the curve is defined by the same chain code (1), and the recurrent
equation of the corner polygonal line is given by

dn+1 =
[
id̄n + dn + dn − id̄n

]
, d0 = [i + 1 − i]. (5)

Bauman [4] proved that the square-to-linear ratio of the Peano–Hilbert curve is equal to 6.

The first Peano curve. The Peano–Hilbert curve analyzed above was constructed by Hilbert.
However, the first curve that sweeps out a square was constructed by Peano himself and is more
complicated. As will be shown below, it has a much greater square-to-linear ratio than the Peano–
Hilbert curve. Therefore, the first Peano curve is little known. The first three approximations to
this Peano curve are shown in Fig. 2.

The first Peano curve satisfies the following symmetry condition: p(1 − t) = 1 + i − p(t).
The beginning and the end of the Peano–Hilbert curve are situated on the same side of the

image square. We call the curves possessing such a property one-sided curves. The beginning and
the end of the first Peano curve lie at opposite vertices of the image square. The curves possessing
this property are said to be diagonal.

The recurrent equation of the central polygonal lines of the first Peano curve is as follows:

dn+1 =
[
dn + i − d̄n + i + dn + 1 + d̄n − i − dn − i + d̄n + 1 + dn + i − d̄n + i + dn

]
, d0 = [ ].

Corner moments of the first Peano curve. To describe Peano curves, we apply the lan-
guage of motion, so that the interval to be mapped is interpreted as a time interval, and its points
are called moments.

Note that for a corner of any fraction of a regular subdivision of a square, there exists a unique
fraction of the next subdivision that contains this corner. Therefore, the moment when the curve
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Fig. 4.

passes through a corner of a given fraction is uniquely defined in the fractal period corresponding
to this fraction. Different fractions may have common corners; therefore, the moment of a corner
of a fraction is correctly (uniquely) defined provided that it is specified to which fraction the corner
belongs.

Since the third fraction (of the first subdivision) of the first Peano curve is similar to the whole
curve, the difference between the moments of the upper left corner of the third fraction and the
beginning of the third fraction is 9 times smaller than the moment of the upper left corner of the
image square. Since the upper left corner of the image square coincides with the upper left corner of
the third fraction and the starting moment of the third fraction is obviously equal to 2

9 , we obtain
the following equation for the first corner moment:

x =
2
9

+
x

9
, (6)

which implies that the moment of the upper left corner of the first Peano curve is equal to 1
4 .

Similar arguments (together with symmetry considerations) allow one to determine the moment of
the lower right corner as 3

4 .
The rectangle composed of the fractions 16, 17, . . . , 21 of the second subdivision (with a side 1

9)
and rotated clockwise through an angle of 90◦ is shown in Fig. 4.

The difference between the moments of the upper left and the upper right corners of this rectangle
is

1
4
+4+ 1

4
81 , while the distance between these corners is 2

3 . As a result, the square-to-linear ratio on
this pair of points is 8. Thus, the square-to-linear ratio of the first Peano curve is at least 8.

Minimal N-shaped curve. There are thousands of regular (in the sense of [2]) Peano curves
of fractal genus 9 with the chain code of the first subdivision equal to [i + i + 1 − i − i + 1 + i + i],
i.e., to the chain code of the first subdivision of the first Peano curve. We call all these curves
N-shaped because of the visual similarity to this letter. Computations performed by the authors
show that the curve presented in Fig. 3 has the minimal square-to-linear ratio among all regular
Peano curves of genus 9.

The recurrent equation of the central polygonal lines of the minimal N-shaped curve is as follows:

dn+1 =
[
dn + i + idn + i + id̄n + 1 + d̄n − i − id̄n − i − idn + 1 + dn + i + idn + i + id̄n

]
. (7)

Corner moments of the minimal curve. Denote the moment of the corner B by s and the
moment of the corner C by t (Fig. 5).

Obviously, the moment of the point A′ is equal to 2
9 . The difference of moments between A′

and B is equal to 1
9 of the difference of moments between A and C in view of the similarity between

the third fraction and the whole curve. As a result, we obtain the equation s = 2
9 + t

9 .
Similarly, the difference of moments between C and D is formed by the interval from D to D′,

equal to 2
9 , and the interval from C to D′, which, in view of similarity, is equal to 1−t

9 ; i.e.,
1 − t = 2

9 + 1−t
9 . Thus, we obtain the following system of equations for the corner moments:

s =
2
9

+
t

9
, 1 − t =

2
9

+
1 − t

9
; (8)

solving this system, we find s = 11
36 and t = 3

4 .
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Fig. 5. Fig. 6.

Knowing the corner moments, we can determine the square-to-linear ratio for the pair of points
A,B shown in Fig. 6.

The moment of the point A is the second corner moment of the first fraction and is therefore
equal to 3

4 ×
1
9 = 1

12 . The point B is the second (according to the traversal order) corner of the 13th
second-order fraction. Therefore, its moment is equal to 12

81 + 3
4 × 1

81 = 17
108 . Hence, the difference

of moments between A and B is equal to 2
27 . Since the squared distance is equal to 52

92 + 32

92 = 34
81 ,

the square-to-linear ratio for this pair is 34
81 : 2

27 = 34
6 = 52

3 . Below, we will show that the maximum
of the square-to-linear ratio of the minimal N-shaped curve is equal precisely to 52

3 .

3. UNIQUENESS THEOREM

Theorem 1. There exists a unique, up to isometry, regular diagonal Peano curve of fractal
genus 9 that maps a unit interval onto a unit square and whose square-to-linear ratio is less than 6.
This curve is defined by equation (7).

The proof of Theorem 1, which is the subject of this section, is divided into a series of lemmas.
To clarify the situation, we will use the letters N, И, S, and Z to denote the fractions of an

N-shaped curve that have the following chain codes of the first subdivision: N = [i + i + 1− i− i +
1 + i + i], И = N = [−i − i + 1 + i + i + 1 − i − i], S = i · N, and Z = −i · N.

Thus, for N, the curve starts moving upward from the lower left corner; for И, the curve starts at
the upper left corner and moves downward; for S, the curve starts moving from the lower left corner
to the right; and for Z, from the lower right corner to the left. In this case, the second subdivision
of an N-shaped Peano curve can be represented as a 3 × 3 matrix.

The order of traversal of fractions gives the nine-letter code NИNИNИNИN for the first Peano
curve and NZSИSZNZS for the minimal curve. We call the codes N and И vertical and the codes
Z and S horizontal. A pair of adjacent symbols of a nine-letter code is called vertical (horizontal)
if the corresponding elements of the nine-element matrix lie in the same column (row).

Lemma 1. In the nine-letter code of any continuous N-shaped curve,

(1) two identical symbols cannot be consecutive;
(2) the symbols N and S cannot be consecutive;
(3) the symbols И and Z cannot be consecutive.

Proof. Each square in the first subdivision chain has its beginning and end on the diagonal.
The beginning of the next square in the chain must coincide with the end of the preceding square.
These arguments allow us to prove that the combinations listed above are impossible. �

Lemma 2. If there is a vertical pair of vertical symbols or a horizontal pair of horizontal
symbols in the nine-letter code of an N-shaped curve, then the square-to-linear ratio of this curve is
greater than 6.
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Fig. 7. Fig. 8.

Proof. In the cases listed above, the curve contains a straightened sequence of six second-order
fractions, as is shown in Fig. 4. Then, the difference of moments between the upper corners is less
than 6

81 = 2
27 (six times the fractal period), whereas the squared distance between the points is

equal to 4
9 . Therefore, the square-to-linear ratio turns out to be greater than 4

9 : 2
27 = 6. �

Lemma 3. For an N-shaped curve, the first corner moment is not greater than 1
3 , while the

second cannot be less than 2
3 .

Proof. Indeed, the first corner is inside the third fraction of the first subdivision, and the
second is inside the seventh fraction. �

Lemma 4. If the square-to-linear ratio of an N-shaped curve is less than 6, then the matrix
of its second subdivision cannot contain a vertical triple of consecutive symbols two of which are
vertical.

Proof. Consider the case when the top and bottom fractions are N and N. This case is illus-
trated in Fig. 7. Then the curve passes the segments AA′ and BB′ in time no greater than 1

3 of the
fractal period, which is equal to the time between A′ and B′. Thus, the curve passes AB in time no
greater than 5

3 : 9 = 5
27 , and the squared distance is equal to 10

9 . As a result, the square-to-linear
ratio for the pair A,B is 6. The case of two И is analyzed similarly. The remaining case of two
consecutive vertical codes is impossible according to Lemma 2. �

Lemma 5. If the square-to-linear ratio of an N-shaped curve is less than 6, then the nine-letter
code of its second subdivision is either NZSИSZNZS or SZNZSИSZN.

Proof. If the code starts with N, then the next two symbols must be horizontal by Lemma 4.
Therefore, they are uniquely identified as Z and S by Lemma 1. The fourth symbol cannot be
horizontal in view of Lemma 2; therefore, it is И. Now, by Lemma 4, the fifth and sixth symbols
are horizontal. Therefore, they are uniquely identified as S and Z (Lemma 1). The seventh symbol
is vertical by Lemma 2. Therefore, the seventh symbol is N. By Lemma 4, we conclude that the
eighth and ninth symbols are horizontal. Therefore, they coincide with Z and S by Lemma 1.

Similarly one can show that a code ending with N has the form SZNZSИSZN. Among the other
letters, only S may be the first or the last letter of the code, because the curve begins at the lower
left corner and ends at the upper right corner.

To complete the proof of the lemma, we must show that the nine-letter code of an N-shaped
curve cannot start and end with S. Suppose the contrary. Then, since any fraction is similar to the
whole curve, we find that the nine-letter code of any fraction starts and ends with the same symbol,
and the type (vertical or horizontal) of this symbol is different from the type of the symbol of the
whole fraction. In this case, any two neighboring fractions cannot be either horizontal or vertical
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simultaneously. Indeed, if they are both horizontal, then they cannot form a horizontal pair by
Lemma 2; however, the junction cannot be vertical either, because otherwise the nine-letter codes
of these fractions start and end with vertical symbols, and the last symbol of the first fraction and
the first symbol of the second fraction form a vertical pair, contrary to Lemma 2. As a result, the
nine-letter code of the curve is uniquely determined as SИSИSИSИS. Then the middle column of the
matrix of the second subdivision contains two vertical symbols, which contradicts Lemma 4. �

Now, we proceed to study the structure of the second subdivision of the minimal N-shaped
curve. The second subdivision consists of 81 fractions; to code these fractions, we will use the same
four-letter alphabet but with lowercase letters instead of capitals.

Lemma 6. If the square-to-linear ratio of an N-shaped curve is less than 6, then the matrix
of the third subdivision contains neither a vertical column of four elements two of which are vertical
nor a horizontal row of four elements with two horizontal codes.

Proof. We will restrict ourselves to the vertical case. The fractal period of the second order
is equal to 1

81 , and the length of a side of a fraction is 1
9 . It takes the curve less than 1

3 of the
fractal period to pass the segments AA′ and BB′ (see Fig. 8); therefore, the time interval between
A and B is less than 22

3 × 1
81 = 8

243 , and the squared distance for AB is equal to 16
81 . Hence, the

square-to-linear ratio for AB is greater than 6. �
A fraction of the first subdivision (coded by a capital letter) is said to be primitive if its nine-

letter code (consisting of lowercase letters) starts with a letter of the same (horizontal or vertical)
type as the type of the whole fraction.

Lemma 7. If the square-to-linear ratio of an N-shaped curve is less than 6 and the nine-letter
code of its second subdivision is NZSИSZNZS, then all fractions of the first subdivision are primitive.

Proof. Let us first prove that the second fraction is primitive. If the first fraction is primitive,
then its nine-letter code ends with nzs arranged in a vertical column. By Lemma 6, this implies
that the first symbol of the nine-letter code of the second fraction cannot be vertical. Hence, it is
horizontal, like the Z-code of the fraction. If the first fraction is not primitive, then its code ends
with a vertical element. The next symbol of the 81-letter code, the one with which the nine-letter
code of the second fraction starts, is situated above the end symbol of the code of the first fraction
and therefore cannot be vertical in view of Lemma 2. Thus, the second fraction starts with a
horizontal code. The primitivity of the fifth and eighth fractions, which are preceded by fractions
with code N, is proved analogously.

Now, let us show that the primitivity of the second fraction implies the primitivity of the third
fraction. Since the second fraction starts with a horizontal code, it ends with a vertical code.
Therefore, the first symbol of the nine-letter code of the third fraction cannot be vertical. Hence,
it is horizontal, which proves the primitivity of the third fraction. In the same way, the primitivity
of the fifth and eighth fractions imply the primitivity of the sixth and ninth fractions. It remains
to establish the primitivity of vertical fractions: the first, fourth, and seventh ones.

Since the third fraction is primitive, the seventh symbol of its code is horizontal (because
the third fraction, just as any other primitive fraction, is obtained from a fraction with the code
nzsиsznzs by an isometry of the plane). Now, Lemma 6 implies that the code of the fourth fraction
starts with a vertical symbol. The primitivity of the seventh fraction is proved analogously.

The primitivity of the first fraction will be proved by contradiction. If the first fraction is not
primitive, then the 81-letter code of the curve has the form [s . . . n]. Consider now the 81-letter code
of the third fraction. Since this fraction is S-shaped and primitive, this code has the form −i[s . . . n]
and ends with s, while the 81-letter code of the И-shaped fourth fraction starts with z. Thus, we
obtain a horizontal pair of horizontal symbols, which contradicts Lemma 2. �

Chain codes of the form ±1 ± i are said to be diagonal.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 263 2008



244 E.V. SHCHEPIN, K.E. BAUMAN

A

B

Fig. 9.

Lemma 8. If the chain code of the central polygonal line of the first subdivision of a diagonal
Peano curve (of any genus) contains a diagonal code, then its square-to-linear ratio is not less
than 6.

Proof. Suppose that the central polygonal line contains two diagonal codes in succession. Then
we obtain a triple of consecutive fractions arranged along a diagonal, as in Fig. 9.

Then the square-to-linear ratio between the beginning of the first fraction A and the end of the
third B is equal to (32 + 32)/3 = 6.

Thus, in what follows we assume that there are no two consecutive diagonal codes. This fact
applies to any subdivision.

Consider an arbitrary diagonal junction PQ of fractions of the first subdivision in more detail;
namely, consider the second subdivision. The last fraction of the second subdivision lying in P is
linked diagonally to the first subfraction of Q; therefore, the second subfraction cannot continue the
diagonal motion and turns to a side. As a result, the next two subfractions of Q (the second and
third) lie on a side of Q. Similar arguments show that the two subfractions of P that precede the
last subfraction in P lie on a side of P . If we consider in addition the fourth subfraction of Q and
the fourth subfraction of P from the end, the set of these eight fractions of the second subdivision
can be arranged either in a 5× 5 square (fractions of the second subdivision are assumed to have a
size of 1×1) or in a 6×4 rectangle. In both cases the sum of squares of the sides is greater than 48;
therefore, the square-to-linear ratio is greater than 6. �

Lemma 9. If the square-to-linear ratio of a diagonal Peano curve of fractal genus 9 is less
than 6, then this curve is isometric to an N-shaped curve.

Proof. Since diagonal junctions are prohibited (by Lemma 8), a curve satisfying the conditions
of the lemma must have a chain code of the first subdivision that starts with either i or 1. Fur-
thermore, this curve must have a code ending with either i or 1, because the curve obtained from
a given curve by time reversal satisfies the conditions of the lemma.

If the first code is i, then the second code is also i because the beginning of the third fraction
coincides with 2i

3 . On the other hand, if the last code is i, then the penultimate code is also i. In
this case, it is already obvious that the curve is N-shaped. If the last code is 1, then the penultimate
code is also 1.

In this case, the third square of the chain coincides with the eighth square, which is impossible.
If the first code is 1, we obtain a curve symmetric to an N-shaped curve. �

Lemma 10. There exists a unique Peano curve of fractal genus 9 whose central polygonal
line of the second subdivision has the nine-letter code NZSИSZNZS and all of whose fractions are
primitive.

Proof. Let us show that in this situation the functional equation of the curve is defined
uniquely. Indeed, to define a functional equation, one should define a similarity between any
fraction and the whole curve. If p(x) denotes the whole curve, then the restriction of the curve
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to the fractal period is isometric to the curve p(9x)
3 . An isometry of curves is defined by isometries

of the domains of definition and images. Since an isometry must map the beginning of a curve
to the beginning, there are only two variants of isometry for the images, one of which generates a
fraction with a vertical symbol, and the other, a fraction with a horizontal symbol. Since we know
the type of the symbol of a fraction, the isometry of the images is defined uniquely. For the isometry
of preimages, there are two variants: a time-preserving and a time-reversing ones. However, only
the time-preserving variant is compatible with the primitivity of fractions. Thus, the functional
equation and hence the curve itself are uniquely defined. �

Proof of Theorem 1. By Lemma 9, any curve satisfying the conditions of the theorem is
isometric to an N-shaped curve. By Lemma 5, the nine-letter code of the curve is either NZSИSZNZS
or SZNZSИSZN. In the first case, by Lemma 7, all fractions of the curve are primitive. Therefore,
in view of Lemma 10, this curve is unique.

In the second case, reversing time, i.e., passing from the curve p(t) to the curve p(1 − t), we
obtain a unique (as we have just shown) curve with the nine-letter code NZSИSZNZS. Thus, the
curve considered in the second case is obtained from the curve of the first case by time reversal.
In particular, these curves are isometric. The uniqueness stated in the theorem is proved. To
prove the existence, it only remains to verify that the minimal curve presented above indeed has
a square-to-linear ratio smaller than 6. Here, we refer to computer calculations (Theorem 8, see
below). �

Corollary 1. The square-to-linear ratio of any regular diagonal Peano curve of fractal genus 9
is greater than or equal to 52

3 .

4. SINGULAR POINTS

A point of a Peano curve whose image belongs to a side of the image square is said to be singular
if it is not a corner point and the curve passes through all other points on this side of the square
either before or after this point. In the first case, this point is also called an entry point, while in
the second case, an exit point for this side of the square.

Singular points may occur in curves of fractal genus greater than 9. Figure 10 shows the central
polygonal line of the first subdivision of a Peano curve of genus 25 with a singular point on the
upper side. To shorten the notation of a chain code, we will write na instead of a + a + . . . + a
(n terms). Then the shortened chain code of the polygonal line in Fig. 10 is expressed as

[
4i + 1 + (1 − i) + (1 + i) + 1 − i − 1 + (i − 1) − (1 + i) − i + 3 − i − 3 − i + 3

]
. (9)

In addition to the central polygonal line, Fig. 10 shows the initial and final corners of fractions
of the first subdivision. To identify the curve, we assume that under the similarity between any
fraction and the whole curve the beginning of the fraction corresponds to the beginning of the curve
and the end corresponds to the end of the curve. Then the knowledge of the beginning and end of
any fraction allows one to uniquely determine the similarity between the whole image square and
this fraction. Therefore, this figure uniquely specifies the curve, and the midpoint of the upper side
is a singular point of this curve.

Lemma 11. The singular points of any unit regular fractal Peano curve are rational.

Proof. If x is a vertex of some subdivision, then it is obviously rational. Let, for some
curve p(t), x be a singular point (say, the entry point) that lies on the upper horizontal side of
the unit square and is not a vertex (corner) of any subdivision. Then x gives rise to a unique nested
sequence of fractions F1 ⊃ F2 ⊃ . . . containing x, where Fk is a fraction of the kth subdivision of
the curve. Here, Fk+1 is defined as the subfraction of Fk that contains x.
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Fig. 10. A singular curve.

Since the number of pairwise nonsimilar fraction–subfraction pairs for a regular fractal curve is
finite, there exists a pair of numbers m < n such that the fraction Fm is similar to Fn and Fm+1

is mapped to Fn+1 under this similarity. In this case, this similarity maps Fm+2 to Fn+2 and,
moreover, Fm+k to Fn+k for any k. Hence, x is a fixed point of this similarity. If we denote by a the
distance from x to the upper left corner of the fraction Fm and by b the distance from the upper
left corner of Fn to the upper left corner of Fm, then we obtain the equation

a = b + aq or a + aq = b + s, (10)

where q is the ratio of the sizes of the fractions Fn and Fm and s is the side length of the fraction Fn.
This shows that a is rational. A similar equation determines the moment of the singular point, which
also turns out to be rational. �

Lemma 12. If a diagonal curve has a singular point, then it has a diagonal junction.
Proof. Consider a sufficiently fine subdivision of the image square such that a fraction Dk that

contains a singular point (say, the entry point) lying on the upper side does not intersect the left
and right sides. Let Dm and Dn be the fractions that are left and right neighbors of Dk. The curve
passes through Dm and Dn after Dk. Let Dm,Dm+1, . . . ,Dn be a chain of successively traversed
fractions that connects the neighbors of the fraction Dk. Let D1, . . . ,Dk be a chain of fractions
that connects the initial fraction with Dk. It follows from topological considerations that the central
polygonal lines of the chains Dm,Dm+1, . . . ,Dn and D1,D2, . . . ,Dk intersect. The intersecting links
of the central chains are the required diagonal junctions. �

Theorem 2. A diagonal regular Peano curve with square-to-linear ratio less than 6 has no
singular points.

Proof. This theorem follows immediately from Lemma 12 proved above and from the earlier
proved Lemma 8. �

5. RATIONALITY OF THE SQUARE-TO-LINEAR RATIO

A point of a curve whose image is a corner point of a fraction of some subdivision is called a
corner point of a Peano curve.

Lemma 13. Let A = p(a) and B = p(b) denote two points of the unit image square of a regular
Peano curve p(t) of genus g that have different ordinates and abscissas. If B is not a corner point
of the curve p(t), then there exists a corner point B′ = p(b′) such that the square-to-linear ratio of
the pair (a, b′) is greater than that of the pair (a, b).

Proof. Without loss of generality, we may assume that A lies to the left of and below B; i.e.,
both coordinates of B are greater than those of A.

To construct b′, consider a fraction J of the nth subdivision that contains b and whose side
is less than the minimum of the differences of the coordinates of the points A and B. Then J is
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a square that contains B. Let B′ denote the upper right corner of this square, which is farthest
from A. Then we take the moment of this corner in J as b′.

Next, consider the greatest m ≥ n for which b belongs to the same fraction of the mth subdivision
as b′. In this case, we have the inequality

|b − b′| ≤ 1
gm

. (11)

Since the fraction of the (m+1)th subdivision that contains B′ does not contain B, at least one of the
coordinates of B′ is greater than the respective coordinate of the point B by at least 1

g(m+1)/2 , which
is the side length of the square of a fraction of the (m+1)th subdivision. Let A have coordinates A1

and A2, B have coordinates B1 and B2, and B′ have coordinates B′
1 and B′

2, respectively. Suppose,
for definiteness, that B′

1 − B1 ≥ B′
2 − B2. Then

B′
1 − B1 ≥ 1

g(m+1)/2
. (12)

Using inequalities (11) and (12) and setting x = 1
gm/2 , we obtain the following inequality for the

square-to-linear ratio of the pair (a, b′):

(B′
1 − A1)2 + (B′

2 − A2)2

b′ − a
≥ (B1 − A1)2 + 2x

√
g−1(B1 − A1) + (B2 − A2)2

b − a + x2
.

To prove that the square-to-linear ratio of the pair (a, b′) is greater than the ratio of the pair (a, b)
for sufficiently large m, it suffices the verify that the derivative of the right-hand side with respect
to x is positive at x = 0. �

Lemma 14. For any noninteger real number x and any natural q > 1, there exists a k such
that the fractional part of the number xqk is not greater than 1 − 1

q .
Proof. Assuming the contrary, we find that the fractional part of x in the base-q numeral

system is represented as an infinite fraction consisting of maximal digits. But such a fraction
represents unity. �

Lemma 15. Let A = p(a) and B = p(b) denote two points of the unit image square of a regular
Peano curve p(t) of genus g that have different ordinates but identical abscissas. If B does not lie
on a horizontal (parallel to the abscissa axis) side of some fraction (of a certain subdivision) of the
curve p, then there exists a point B′ = p(b′), arbitrarily close to B, that has the same abscissa as B
and is such that the square-to-linear ratio of the pair (a, b′) is greater than that of the pair (a, b).

Proof. Denote the ordinate of a point Z of the square by Im Z. We will assume that B is
located above A; i.e., B has a greater ordinate, ImB > Im A.

Suppose that B does not belong to the horizontal boundary of any fraction of any subdivision.
By Lemma 14 applied to Im B (for q =

√
g), there exists a k such that the upper boundary of the

kth-order fraction F that contains B lies at a distance ≥ g−(k+1)/2 from B. Denote by ∆tk the time
interval between b and a point B′ of the upper boundary of F that has the same abscissa as B.
Then the ordinate of B′ is greater than that of B by ∆yk ≥ g−(k+1)/2.

The square-to-linear ratio for a pair a, t in the case when p(t) has the same abscissa as A is
given by the following function of three variables:

f(t, x, y) =
(x − y)2

t − a
, (13)

where y = Im p(t) and x = Im A.
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In this case, the difference between the square-to-linear ratios of the pairs (a, b+∆tk) and (a, b)
is represented as ∂f(t,x,y)

∂t ∆tk + ∂f(t,x,y)
∂y ∆yk + o(∆yk) as k → ∞. Since ∆tk = o(∆yk) in this case

and the derivative ∂f(t,x,y)
∂y is positive, it follows that f(t, x, y) is not a local maximum. �

Theorem 3. The square-to-linear ratio of a regular Peano curve can attain its maximum either
on a pair of corners or on a pair of singular points of some subdivision ; in the latter case, either this
pair of points has identical abscissas and both points lie on the horizontal boundaries of fractions,
or the pair has identical ordinates and both points belong to the vertical boundaries of fractions.

Proof. Let A = p(a) and B = p(b) with ReA �= Re B and Im A �= Im B be a pair of points of
a curve p(t) with the maximum square-to-linear ratio. Then the fact that both of them are corner
points follows immediately from Lemma 13.

If the abscissas of the points A = p(a) and B = p(b) coincide, then Lemma 15 implies that these
points lie on the horizontal sides of their fractions. Let, for definiteness, a < b. Then p(a) is the
exit point for its side, because for any other point of this side the squared distance to B is greater
and the ratio of this squared distance to the time interval is not greater. Hence, the time interval
from this point to b must be greater than b − a; i.e., the curve passes through this point earlier.
Similar arguments show that B must be the entry point of the corresponding side.

The case of coinciding ordinates is considered in a similar way. �
Corollary 2 (Bauman). For a regular Peano curve that maps a unit interval onto a unit

square, the square-to-linear ratio is a rational number.
Proof. Theorem 3 and Lemma 11 immediately imply that the numerator of the maximum

square-to-linear ratio is rational. The denominator is rational because the singular and corner
moments of a regular Peano curve are rational. The rationality of the former is proved in Lemma 11,
and the rationality of the latter is proved analogously. �

6. DEPTH

Junctions. A junction PQ of fractions P and Q of the kth subdivision is called a derived
junction of a junction RS of fractions R and S of a coarser subdivision if P lies in R and Q lies in S.

Lemma 16. Any junction is similar to a derived junction of a junction of fractions of the first
subdivision.

Proof. We prove this lemma by induction on the order k of fractions in the junction. For
k = 1, the assertion is trivial. Suppose that it is valid for the junctions of the kth subdivision.
Consider a junction of fractions of the (k + 1)th subdivision. If this junction is not a derived
junction of a junction of the first subdivision, then it is completely contained in one fraction of the
first subdivision. In this case, applying the similarity transformation that maps this fraction of the
first subdivision to the whole curve, we map this junction to a similar junction of fractions of the
kth subdivision; thus, our assertion reduces to the induction hypothesis. �

For any junction, we define its depth as the minimal k for which this junction is similar to a
junction of a pair of fractions of the kth subdivision.

For a regular Peano curve, we define its depth as the maximum depth of its junctions.
Note that the depth of any curve is not less than 1. One can prove that the depth of any regular

Peano curve is not greater than 9.
Theorem 4. The depth of the minimal diagonal curve of genus 9 is 1. The depth of the first

Peano curve is 1. The depth of the Peano–Hilbert curve is 2.
Proof. The nine-letter code of the minimal curve is NZSИSZNZS. The junctions of the first

subdivision have the codes NZ, ZS, SИ, ИS, SZ, and ZN. Note that the horizontal junctions SИ and
ZN are isometric to each other and to the vertical junctions NZ and ИS.
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For a fraction of type N, the code of the second subdivision is N . . . S; for a fraction of type Z, the
code of the second subdivision is Z . . . И; for a fraction of type S, the code of the second subdivision
is S . . . N; and for a fraction of type И, the code of the second subdivision is И . . . Z. Using this table,
we find the derived junctions of all vertical junctions of the first subdivision: NZ′ = SZ, ZS′ = ИS,
ИS′ = ZS, and SZ′ = NZ. Thus, we can see that all derived junctions coincide with junctions of the
first subdivision. Thus, the depth of this curve is 1.

The nine-letter code of the first Peano curve is NИNИNИNИN. Hence, this curve has only two
types of junctions, NИ and ИN, each having a horizontal and a vertical variants. Each of this
junctions is a derived junction of itself. Therefore, the depth of the first Peano curve is 1.

We leave it to the reader to determine the depth of the Peano–Hilbert curve. �

7. PARTIAL SQUARE-TO-LINEAR RATIOS

For a pair of points p(a) = (A1, A2), p(b) = (B1, B2) of a Peano curve p(t), we define horizontal
and vertical square-to-linear ratios as

(A1 − B1)2

|b − a| and
(A2 − B2)2

|b − a| , (14)

respectively. We call each of these ratios partial, as opposed to the total ratio, which is the sum of
the vertical and horizontal ratios.

The theory developed in the previous section for the total square-to-linear ratio can also be
carried over to the partial ratios, essentially without changing the proofs. The main result for the
partial ratios is formulated as follows.

Theorem 5. The vertical (horizontal) square-to-linear ratio of a regular Peano curve can
attain its maximum on a pair of corners or a pair of singular points of some subdivision ; in the
latter case, this pair of points lies on the horizontal (respectively, vertical) boundaries of fractions.

A pair of points of a Peano curve is called primary if it bounds a segment of the curve that is
not similar to any segment of this curve of greater diameter.

Lemma 17 (on a primary ratio). The following inequality holds for a primary pair of points
A = p(x) = (A1, A2), B = p(y) = (B1, B2) of a regular unit Peano curve of genus g ≥ 9 and
depth d:

|A1 − B1|
|x − y| ≤ g

√
gd.

Proof. If a primary pair is not contained in a junction of the first subdivision, then the time
interval between the points of this pair is not less than 1

g , whereas the difference of their coordinates
is not greater than the side of the image square (i.e., 1). Therefore, the distance-to-time ratio for
these points is estimated from above by g, which is less than g

√
gd.

Suppose that the points are contained in a junction of the uth subdivision and are not contained
in a junction of the (u + 1)th subdivision, so that u ≤ d by the definition of the depth of a curve.
Then, the following inequalities hold:

s = |A1 − B1| ≤
2√
gu

, t = |x − y| ≥ 1
gu+1

, (15)

because the projection of a junction of fractions of the uth subdivision onto the abscissa axis is not
greater than 2√

gu , while the time interval between them is not less than 1
gu+1 .

Moreover, if the time interval between the points is not greater than 2
gu+1 , then the pair lies in

the union of a chain of three fractions of order u + 1, whose projection is not greater than 3√
gu+1

.
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Therefore, the ratio s/t does not exceed 3
√

gu+1 in this case. If the time interval is greater than
2

gu+1 , then the ratio s/t is estimated from above by g
√

gu.
If √g ≥ 3, then we have

s

t
≤ g

√
gu (16)

in both cases. �
A pair of points obtained from a primary pair by a similarity that takes the whole curve to a

fraction of the first subdivision is called secondary.
Lemma 18. The maximum of a partial square-to-linear ratio of a regular Peano curve of

depth d is attained either on a primitive pair of points or on a secondary pair.
Proof. Any similarity of fractions either preserves the horizontal and vertical square-to-linear

ratios or interchanges them. If all fractions of the first subdivision are similar to the whole curve
with the preservation of horizontal ratios, then the same is true for fractions of all subdivisions.
Since any pair of points is similar to a primary pair, a pair with maximum horizontal ratio is similar
in this case to a primary pair with maximum horizontal ratio.

If the similarity between some fraction of the first subdivision and the whole curve interchanges
the horizontal and vertical ratios, then a primary pair of points similar to a pair of points with
maximum horizontal ratio may have other horizontal ratio. In this case, applying to this primary
pair a similarity transformation that maps the whole curve to a fraction of the first subdivision and
interchanges the horizontal and vertical ratios, we obtain a secondary pair with maximum horizontal
ratio. �

Theorem 6. For a regular Peano curve of genus g ≥ 9 and depth d, a partial square-to-
linear ratio attains its maximum on a pair of corner or a pair of singular points of the subdivision
with number ≤ d + 4. For the vertical (horizontal) ratio, the extremal pair lies on the horizontal
(respectively, vertical) sides of the fractions of this subdivision.

Proof. Let X1 and X2, X1 < X2, be the abscissas of a primary or secondary (Lemma 18) pair
of points with maximum horizontal square-to-linear ratio, and let t1 and t2, t1 < t2, be the moments
of these points. As follows from Theorem 5, the numbers X2 and X1 are √

g-rational. Let k be the
greatest natural number such that X2

√
gk is not integer. Then the fractional part of this number

is not greater than 1 − 1√
g .

Consider a fraction Q of the kth subdivision that contains p(t2). Denote by p(t′) the entry point
on the right side of Q with abscissa X ′. Then the following inequalities hold:

∆X = X ′ − X2 ≥ 1√
gk+1

, ∆t = t′ − t2 ≤ 1
gk

. (17)

Since the pair t1, t2 is maximal, setting t = t2 − t1, we have the inequality

(X2 − X1)2

t
≥ (X2 − X1 + ∆X)2

t + ∆t
. (18)

Multiplying by the denominators and canceling out equal terms, we can reduce this inequality
to the following equivalent one:

∆t(X2 − X1)2 ≥ 2t∆X(X2 − X1) + (∆X)2t. (19)

This inequality implies the following:

∆t(X2 − X1)2 > 2t∆X(X2 − X1), (20)
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which is equivalent to the following:
∆X

∆t
<

X2 − X1

2t
. (21)

By inequalities (17), the left-hand side of (21) is greater than
√

gk−1, whereas the right-hand
side is estimated from above by 1

2g
√

gd for a primary pair in view of Lemma 17 and by 1
2g

√
gd+1

for a secondary pair. Therefore, inequality (21) implies the inequality
√

gk−1 <
1
2
g
√

gd+1, (22)

which yields k − 1 < d + 3, i.e., k ≤ d + 3.
As a result, we find that X2

√
gd+4 is an integer number. Thus, the point p(t2) belongs to the

right boundary of a fraction of the (d + 4)th subdivision. Since the ratio is maximal, this point is
the entry point for the right side of this fraction. �

8. STABILIZATION OF THE SQUARE-TO-LINEAR RATIO

Lemma 19. The following inequality holds for a primary pair of points X = p(x), Y = p(y)
of a regular Peano curve of genus g ≥ 9 and depth d:

|X − Y |
|x − y| ≤ g

√
2gd.

Proof. If a primary pair is not contained in a junction of the first subdivision, then the distance
between the points of the pair is not greater than the diagonal of the square, i.e.,

√
2, and the time

interval between these points is at least 1
g . Therefore, the distance-to-time ratio for these points is

estimated from above by g
√

2, which is less than g
√

2gd.
Suppose that the points are contained in a junction of the uth subdivision and are not contained

in a junction of the (u + 1)th subdivision, so that u ≤ d by the definition of the depth of a curve.
Then the following inequalities hold:

s = |X − Y | ≤ 2
√

2√
gu

, t = |x − y| ≥ 1
gu+1

, (23)

because the diameter of a junction of fractions of order u is not greater than 2
√

2√
gu (

√
5√
gu for a junction

along a side), and the time interval between the points is not less than the time 1
gu+1 .

Moreover, if the time interval between the points is not greater than 2
gu+1 , then the pair belongs

to the union of a chain of three fractions of order u + 1, whose diameter is not greater than 3
√

2√
gu+1

.

Therefore, the ratio s/t is not greater than 3
√

2gu+1 in this case. If the time interval is greater
than 2

gu+1 , then the ratio s/t is estimated from above by g
√

2
√

gu.
If √g ≥ 3, then we have

s

t
≤ g

√
2gu (24)

in both cases. �
Lemma 20. Let p(t) be a regular Peano curve of genus g ≥ 9 and depth d. Then a primary

pair of points p(t1) = (X1, Y1) and p(t2) = (X2, Y2) with maximum total square-to-linear ratio and
with |X1−X2| ≥ |Y1−Y2| belongs to the vertical boundaries of fractions of the (d+3)th subdivision.

Proof. Without loss of generality, we assume that p(t1) lies below and to the left of p(t2).
Thus, the differences of coordinates X2 − X1 and Y2 − Y1 are nonnegative.
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In this case, we are going to prove that X2

√
gd+3 is an integer number. Assuming the contrary,

by Lemma 14 we find a k ≥ d+3 such that the fractional part of X2

√
gk is not greater than 1− 1√

g .
Consider a fraction Q of the kth subdivision that contains p(t2). Denote by p(t′) = (X ′, Y2) a

point on the upper side of Q that has the same ordinate as p(t2). Then the following inequalities
hold:

X ′ − X2 ≥ 1√
gk+1

, t′ − t2 ≤ 1
gk

. (25)

Let us show that the assumption k ≥ d + 3 contradicts the maximality of the square-to-linear
ratio of the pair p(t1), p(t2), because this ratio for the pair p(t1), p(t′) turns out to be greater; i.e.,
let us prove the inequality

(X2 − X1)2 + (Y2 − Y1)2

t
<

(X ′ − X1)2 + (Y2 − Y1)2

t + ∆t
(26)

for t = t2 − t1 and ∆t = t′ − t2.
Multiplying by the denominators and canceling out equal terms, we can transform inequality (26)

into an equivalent one

∆t
(
(X2 − X1)2 + (Y2 − Y1)2

)
< 2t∆X(X2 − X1) + (∆X)2t, (27)

where ∆X = X ′ − X2.
This inequality follows from the stronger inequality

∆t
(
(X2 − X1)2 + (Y2 − Y1)2

)
≤ 2t∆X(X2 − X1), (28)

which is equivalent to the following:
√

(X2 − X1)2 + (Y2 − Y1)2

t
≤ 2∆X

∆t

X2 − X1√
(X2 − X1)2 + (Y2 − Y1)2

. (29)

By Lemma 19, the left-hand side of the last inequality is not greater than g
√

2gd; on the
right-hand side, in view of (25), the first fraction is estimated from below by 2

√
gk−1, while the

second is ≥ 1√
2
, because |X1 − X2| ≥ |Y1 − Y2|. Therefore, inequality (26) is valid provided that

d + 2 ≤ k − 1. �
Lemma 21. Let Q denote the total square-to-linear ratio and Qx be the horizontal ratio for

the curve p(t). Let t1, t2 be a pair of moments with maximum total square-to-linear ratio. Then the
following inequality holds for the difference ∆Y between the ordinates of the points p(t1) and p(t2):

∆Y ≥
√

t2 − t1
√

Q − Qx. (30)

Proof. Let p(t1) = (X1, Y1) and p(t2) = (X2, Y2). Then

Q =
(X2 − X1)2 + (Y2 − Y1)2

t2 − t1
≤ Qx +

(Y2 − Y1)2

t2 − t1
,

which immediately implies the required inequality. �
Theorem 7. Suppose that the greatest partial square-to-linear ratio Qx of a regular Peano

curve of genus g and depth d is less than its total ratio Q. Then the (total) square-to-linear ratio
attains its maximum on primary pairs of points that are corners of fractions of the subdivision with
number < d + 3 + logg

Q2

4(Q−Qx) .
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Proof. Let p(t1) = (X1, Y1) and p(t2) = (X2, Y2) be a primary pair of points on which the
total square-to-linear ratio of the curve attains its maximum.

Without loss of generality, we will assume that the differences of coordinates X2−X1 and Y2−Y1

are nonnegative. The assumptions t2 > t1 and Y2 − Y1 ≤ X2 − X1 do not restrict generality either.
In this case X1

√
gd+3 and X2

√
gd+3 are integers by Lemma 20.

Let k be the greatest natural number such that Y2

√
gk is not integer (such a number exists in

view of Theorem 3). Then the fractional part of Y2

√
gk is not greater than 1 − 1√

g .
Consider a fraction F of the kth subdivision that contains p(t2). Denote by p(t′) = (X2, Y

′
2)

a point on the upper side of F that has the same abscissa as p(t2). Then we have the following
inequalities:

∆Y = Y ′
2 − Y2 ≥ 1√

gk+1
, ∆t = t′ − t2 ≤ 1

gk
. (31)

Since the square-to-linear ratio of the pair t1, t2 is maximal, we have the inequality

(X2 − X1)2 + (Y2 − Y1)2

t2 − t1
≥ (X2 − X1)2 + (Y2 − Y1 + ∆Y )2

t2 − t1 + ∆t
. (32)

Multiplying by the denominators and canceling out equal terms, we can reduce inequality (32)
to an equivalent one

∆t
(
(X2 − X1)2 + (Y2 − Y1)2

)
≥ 2(t2 − t1)∆Y (Y2 − Y1) + (∆Y )2(t2 − t1). (33)

This inequality implies

∆t
(
(X2 − X1)2 + (Y2 − Y1)2

)
> 2(t2 − t1)∆Y (Y2 − Y1), (34)

which is equivalent to the following:

∆Y

∆t
<

Q

2(Y2 − Y1)
. (35)

By Lemma 21, we have Y2 − Y1 ≥
√

t2 − t1
√

Q − Qx. Since t2 − t1 ≥ 1
gd+1 for a primary pair,

we arrive at the following inequality:

∆Y

∆t
<

√
gd+1

Q

2
√

Q − Qx
. (36)

Now, recalling inequalities (31), we conclude that
√

gk−d−2 <
Q

2
√

Q − Qx
. (37)

Squaring this inequality and taking the logarithm of the result obtained to the base g, we find

k < d + 2 + logg
Q2

4(Q − Qx)
; (38)

hence, recalling the definition of k, we obtain the assertion of the theorem. �

9. THE SQUARE-TO-LINEAR RATIO OF THE MINIMAL CURVE

This section is devoted to the proof of the following theorem.
Theorem 8. The square-to-linear ratio of the minimal N-shaped Peano curve is 52

3 .
The proof given below is of virtual character. It is considerably based on computer calculations.

The following lemma summarizes the necessary results of computer calculations.
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Lemma 22. The maximum of the square-to-linear ratios of pairs of corners of the fifth subdi-
vision of the minimal N-shaped Peano curve is 52

3 , while the maximum of the horizontal square-to-
linear ratios of pairs of corners of the fifth subdivision of this curve is 51

3 .

Proof. The program compiled by K. Bauman calculated2 the square-to-linear ratios for all
pairs of corners of the fifth subdivision of the minimal N-shaped curve of genus 9.

This maximum value 52
3 is attained, in particular, for a pair of points with coordinates

(
3
35 , 0

)
and

(
0, 5

35

)
. The moments of these points are 20

177 147 and 38
177 147 , respectively, the squared distance

between these points is 4
6561 , and the time interval between them is 2

19 683 .
The calculations also showed that the horizontal square-to-linear ratio Qx attains its maximum,

in particular, on a pair of points with coordinates
(
0, 9

35

)
and

(
4
35 , 9

35

)
. The moments of these points

are 74
177 147 and 83

177 147 , respectively, the squared distance between these points is 16
95 , and the time

interval between them is 9
177 147 = 1

19 683 . The horizontal square-to-linear ratio for these points is
Qx = 51

3 . �
Lemma 23. The maximum horizontal and vertical square-to-linear ratios of the minimal

N-shaped Peano curve are equal.

Proof. Since the second fraction of the first subdivision of the N-shaped curve is coded by the
letter Z of horizontal type, this fraction is homothetic to the whole curve turned through an angle
of 90◦. Therefore, the maximum vertical square-to-linear ratio Q′

y of this fraction coincides with the
maximum horizontal ratio Qx of the whole curve, while the maximum horizontal ratio Q′

x of this
fraction coincides with the maximum vertical ratio Qy of the whole curve. On the other hand, the
maximum partial ratio of a fraction does not exceed the corresponding maximum ratio of the whole
curve. Thus, the inequalities Qy = Q′

x ≤ Qx and Qx = Q′
y ≤ Qy hold, which imply Qx = Qy. �

Let us denote by |p|n the maximum of the square-to-linear ratios of a regular Peano curve p(t)
over all possible pairs of corner points of its nth subdivision. We will refer to |p|n as the n-corner
ratio. By |p| we denote the square-to-linear ratio of the curve p(t).

Lemma 24. Let p(t) be a regular Peano curve of genus g and depth d. Then the following
inequality holds for any n ≥ d:

|p|n ≤ |p| ≤ |p|n
(

1 +
2

g(n−d−1)

)
.

Proof. Let t, t′ ∈ [0, 1]. The square-to-linear ratio of p for this pair is the same as that for
a similar primary pair. Therefore, we may assume that t and t′ do not belong to adjacent fractal
periods of the (d + 1)th subdivision. Hence,

|t − t′| ≥ 1
g1+d

. (39)

Consider the fractions of the curve of the nth subdivision that contain p(t) and p(t′). The images
of these fractions are squares that contain the points p(t) and p(t′), respectively. Therefore, the
distance between p(t) and p(t′) is not greater than the distance between the farthest corners of these
squares. Denote by τ and τ ′ the corresponding corner moments. Then

|p(t) − p(t′)| ≤ |p(τ) − p(τ ′)|, |t − τ | ≤ 1
gn

, |t′ − τ ′| ≤ 1
gn

. (40)

2The calculations used integer type data and so are exact.
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Inequalities (39) and (40) allow us to estimate from above the square-to-linear ratio of the pair
p(t), p(t′) in the following way:

|p(t) − p(t′)|2
|t − t′| ≤ |p(τ) − p(τ ′)|2

|t − t′| =
|p(τ) − p(τ ′)|2

|τ − τ ′|
|τ − τ ′|
|t − t′|

≤ |p|n
(

1 +
|t − τ | + |t′ − τ ′|

|t − t′|

)
≤ |p|n

(
1 + 2g1+d−n

)
. � (41)

Proof of Theorem 8. Since the depth of the minimal N-shaped Peano curve is 1 (Theorem 4)
and it has no singular points (by Lemma 12), Theorem 6 implies that the horizontal square-to-
linear ratio of this curve attains its maximum on a certain pair of corners of fractions of the fifth
subdivision and is equal to Qx = 51

3 according to Lemma 22.
Next, an upper estimate for the total square-to-linear ratio Q < 52

3

(
1+ 2

93

)
< 6 can be obtained

by Lemmas 24 and 22. Since Q ≥ 52
3 , we obtain the following inequalities:

log9

Q2

4(Q − Qx)
< log9

62

4 × 1
3

=
3
2
,

which, in view of Theorem 7 (applicable due to Lemma 23), imply that the total square-to-linear
ratio attains its maximum on pairs of corners of the fifth subdivision of the minimal Peano curve. �

10. CONCLUDING REMARKS

The literature mainly deals with “square” Peano curves (i.e., curves that map an interval onto
a square). Is it possible to construct Peano curves with smaller square-to-linear ratio if we remove
any constraints on the form of the image? What is the form of the image for Peano curves with the
minimal square-to-linear ratio? These questions are closely related to the following open problem
(cf. [2]).

Problem 1. What is the minimum number κ for which there exists a continuous mapping of
a unit interval onto a plane set of unit area with the maximum square-to-linear ratio equal to κ?

The minimum number κ mentioned in this problem is called the Peano constant of free form. If
we impose a constraint on the form of the image in this problem (square, triangle, disk, etc.), then
the corresponding minimum is called the Peano constant of this form (square, triangular, circular,
etc.). For instance, all the results of the paper [2] are devoted to estimates for the square Peano
constant.

Stabilization problem. The theory developed in this paper leads to the following natural
conjecture: for a regular Peano curve of depth d, the square-to-linear ratio attains its maximum
either on a pair of corners of fractions of the (d + 4)th subdivision or on a pair of singular points of
fractions of the (d + 4)th subdivision.
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